Open Access Variant Form of Diffuse Corporal Gastritis in NHE2 Knockout Mice

 Download
(PDF 141.9kb)
 
Download Article:

Abstract:

Mice lacking the NHE2 Na + /H + gene develop gastritis of the glandular mucosa as early as the tenth day of life, achieving maximal intensity of inflammation from 17 to 19 days after birth and maximal atrophy at one year. We assessed the effects of this process in such mice to 16 months of age. The stomach of NHE2 null mutants was examined at 10, 17 to 20, 24 to 35 and 49 to 70 days, and at 12 to 16 months. The NHE2 wild-type (+/+) and NHE2 heterozygous (+/-) mice were compared with the NHE2 homozygous mutant mice (-/-). The stomach of the mutant mice at all ages was characterized by a substantially reduced number of parietal cells. The 10-day-old mouse stomach had a transmural infiltrate of primarily neutrophils. With increasing age, neutrophils were replaced by lymphocytes and plasma cells in the glandular mucosa of the mutant mice. Young adult 49- to 70-day-old mice had surface cell hyperplasia and expansion of the replicating cell population. Hyperplasia of enterochromaffin-like cells and antral gastrin cells accompanied profound fundic gland and surface cell hyperplasia, and became progressively more severe with increasing age of the NHE2-/- mice. Neoplasms were not found in the mutant or control mice. This gastritis differs from that of autoimmune gastritis in that it is transmural, begins in infancy, and is associated with a predominantly neutrophilic infiltrate in its early stages. Some of the histologic changes in the adult mice can be explained on the basis of prolonged achlorhydria. This mouse may be a suitable model for prolonged effects of achlorhydria.

Document Type: Research Article

Publication date: October 1, 2000

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more