Skip to main content

Open Access Comparison of Two Porcine (Sus scrofa domestica) Skin Models for In Vivo Near-Infrared Laser Exposure

Download Article:
(PDF 297.1552734375 kb)


Background and Purpose: The current safety standards for lasers operating in the 1,400- to 2,000-nanometer (nm) wavelength region are based on only a few observations at specific wavelengths. On the basis of experimental results conducted with Yorkshire pigs (Sus scrofa domestica), these standards may not accurately reflect the potential for laser injury when humans are exposed to these wavelengths. It is our belief that one of the damage mechanisms involved in these laser injuries results from energy absorption by skin pigmentation (melanin), and a more highly pigmented animal model, the Yucatan hairless minipig, may be a more suitable subject for laser exposure studies.

Methods: Skin specimens were collected from Yorkshire pigs and Yucatan minipigs for histologic examination, and the thickness of the epidermis was measured. Epidermal thickness of human skin also was determined, and a qualitative assessment of the melanin content in the epidermal layers was conducted.

Results: Mean ± SD thicknesses of the Yucatan minipig flank and dorsal neck epidermis were 68 ± 34 and 68 ± 25 m, respectively. Thicknesses of the Yucatan minipig skin were closely comparable to the thicknesses of human epidermis from the face (68 ± 26 m), neck (65 ± 24 m) and arms (68 ± 21 m). The Yorkshire pig lacks substantial melanin in the epidermis, whereas the skin of the Yucatan minipig is more similar to that of humans.

Conclusion: On the basis of epidermal skin thickness measurements and melanin assessment, the flank and dorsal neck of the Yucatan minipig are better suited to laser injury studies than are the Yorkshire pig models of human skin.

Document Type: Research Article

Publication date: 2000-08-01

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more