Skip to main content

Open Access Cardiac Troponin T is a Sensitive, Specific Biomarker of Cardiac Injury in Laboratory Animals

Download Article:
(PDF 95 kb)


A reliable serum assay that can discriminate between cardiac and skeletal muscle injury is not available for diagnostic use in laboratory animals. We tested and supported the hypotheses that serum cardiac troponin T (cTnT) was widely applicable in laboratory animals as a biomarker of cardiac injury arising from various causes; that it increased in proportion to severity of cardiac injury; and that it was more cardiospecific than creatine kinase (CK) or lactate dehydrogenase (LD) isozyme activities. In canine and rat models of myocardial infarction, cTnT concentration increased 1,000- to 10,000-fold and was highly correlated with infarct size within 3 h of injury. Serum CK and LD isozymes were substantially less effective biomarkers and, in contrast to cTnT, were ineffective markers in the presence of moderate skeletal muscle injury, with resulting serum CK activity >5,000 U/L. Using these animal models, and mouse and ferret models, we also showed cTnT to be an effective biomarker in doxorubicin cardiotoxicosis, traumatic injury, ischemia, and cardiac puncture. Reference range serum concentrations for all species were at the detection limit of the assay, except those for mice, in which they were slightly increased, possibly because mice were used to generate assay monoclonal antibodies. We conclude that cTnT is a powerful biomarker in laboratory animals for the sensitive and specific detection of cardiac injury arising from various causes.

Document Type: Research Article

Publication date: October 1, 1997

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics