Skip to main content

Multi-Walled Carbon Nanotubes Induce Apoptosis in RAW 264.7 Cell-Derived Osteoclasts Through Mitochondria-Mediated Death Pathway

Buy Article:

$107.14 + tax (Refund Policy)

Carbon nanotubes (CNTs) have attracted great interest with respect to biomaterials, particularly for use as an implant material in bone-tissue engineering. Accordingly, the bone-tissue compatibility of CNTs and their influence on new bone formation are important issues. In the present study, we examined the effects of multi-wall carbon nanotubes (MWCNTs) on the receptor activator of nuclear factor KB ligand (RANKL)-supported osteoclastogenesis using a murine monocytic cell line RAW 264.7. MWCNTs significantly suppressed the differentiation of RAW 264.7 cells into osteoclasts. Treatment with MWCNTs induced apoptosis in osteoclasts as characterized by nuclear condensation, DNA fragmentation, caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, but did not decrease the cell viability of the osteoblast-like cell line MC3T3-E1. MWCNTs also induced loss of the mitochondrial membrane potential (ΔΨ) by regulating expression of Bcl-2 family proteins and caused release of cytochrome c from mitochondria to cytosol. MWCNTs-induced apoptosis in osteoclasts was inhibited both by cyclosporin A, a blocker of the mitochondrial permeability transition pore, and by DEVD-CHO, a cell-permeable inhibitor of caspase-3. The present study suggests that MWCNTs suppresse osteoclastogenesis via the inhibition of osteoclast differentiation and the induction of apoptosis in osteoclasts, rendering them promising candidate for the treatment of osteoclast-related diseases.

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content