Skip to main content

Processing Route to Disentangle Multi-Walled Carbon Nanotube Towards Ceramic Composite

Buy Article:

$107.14 + tax (Refund Policy)

Multi-walled carbon nanotubes were highly aggregated into ropes after their synthesis by chemical vapour deposition and, therefore, two different methods for disentangling the bundles of nanotubes were studied. One method compared the use of mild and vigorous mechanical treatments in ethanol and the other one employed dispersants in aqueous media. For comparison purposes and according to their different exfoliating behaviour, sodium dodecyl sulphate and gum arabic were selected as dispersants. The results evidenced that mechanical sonication was insufficient for disentangling the ropes, whereas, the combined action of mild sonication in an ultrasonic bath with the addition of gum arabic to an aqueous suspension containing nanotubes improved the exfoliating performance. Stable suspensions of unbundled multi-walled carbon nanotubes were obtained adding only 0.05 wt% of gum arabic with a dispersant/MWNTs concentration ratio of 0.25. These values corresponded to a reduction in the dispersant concentration between 1 to 2 orders of magnitude compared to those commonly employed. In addition, a processing route for manufacturing dense and homogenous silicon nitride composites using spark plasma sintering with 1.8 vol% of multi-walled carbon nanotubes almost free of organics was developed without nanotubes degradation and aggregation.

Keywords: CARBON NANOTUBE; DISPERSION; FUNCTIONALIZATION; GUM ARABIC; SI3N4 COMPOSITES; SPARK PLASMA SINTERING

Document Type: Research Article

Publication date: 01 October 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content