Skip to main content

Low Temperature Synthesis of Magnetite and Maghemite Nanoparticles

Buy Article:

$107.14 + tax (Refund Policy)

We report on the synthesis of iron oxide nanoparticles below 100 °C by a simple chemical protocol. The uniqueness of the method lies in the use of Ferrous ammonium sulphate (in conjugation with FeCl3) which helps maintain the stability of Fe2+ state in the reaction sequence thereby controlling the phase formation. Hexamine was added as the stabilizer. The nanoparticles synthesized at three different temperatures viz, 5°, 27°, and 95 °C are characterized by several techniques. Generally, when a mixture of Fe3+ and Fe2+ is added to sodium hydroxide, α-Fe2O3 (the anti-ferromagnetic phase) is formed after the dehydration process of the hydroxide. In our case however, the phases formed at all the three temperatures were found to be ferro (ferri) magnetic, implying modification of the formation chemistry due to the specifics of our method. The nanoparticles synthesized at the lowest temperature exhibit magnetite phase, while increase in growth temperature to 95 °C leads to the maghemite phase.

Keywords: LOW TEMPERATURE SYNTHESIS; MAGHEMITE; MAGNETITE; NANOPARTICLES

Document Type: Research Article

Publication date: 01 December 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content